
Eur. Phys. J. D 9, 249–252 (1999) THE EUROPEAN
PHYSICAL JOURNAL D

EDP Sciences
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Abstract. We propose a one-electron potential, having a V-shaped valley at the surface, for an alkali cluster.
The energy levels calculated by a perturbation method agree with those calculated by a density functional
method. From those energy levels, we derive the sum of one-particle energies and clarify its correspondence
to the total energy per atom. It is shown that 3/4 of the summed energy levels per atom agree with an os-
cillatory part of the total energy per atom. By adding another perturbation potential, we obtain the size
dependence of ionization energy, which agrees with measured data and the data calculated by a density
functional method including self-interaction correction.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 36.40.Wa Charged clusters – 71.24.+q
Electronic structure of clusters and nanoparticles

1 Introduction

In recent years, the physics of clusters has been so de-
veloped that several kinds of microscopic descriptions
of electronic and vibrational properties are given [1–3].
Many researchers have studied electronic states of a clus-
ter as a function of the number of atoms N by several
methods: Hartree, Hartree–Fock (HF) and density func-
tional methods (DF) [4–14]. Among them, Ekardt [4] has
clarified the utility of a DF method. Including the effect of
self-interaction correction (SIC), Ishii et al. [13] have calcu-
lated the total energy per atom, and the ionization energy
of NaN clusters (N = 1∼ 25). They have shown that a sim-
ple DF method underestimates the energy levels and the
ionization energy. Recently, Yannouleas and Landman [14]
have extended a shell correction method and derived the
total energy per atom, the ionization energy, and so on.

Here, we show how one-particle models explain the en-
ergy levels, ionization energies, and binding energies of al-
kali clusters. We propose a model potential which enables
us to estimate these quantities.

2 Energy levels for one-particle potentials

Throughout the present report, we assume a cluster to
be spherical. At first we consider a square-well potential:
VSQ(r) =−V0θ(R− r), where θ(x) represents a step func-
tion andR is the cluster radius defined byR= aBrSN

1/3 in
which aB is the Bohr radius, and rS is the radius of a sphere
per conduction electron. We find the radial wave function

of an electron as

ψnl(r) =
√

2/(C2
nlR

3)
{
jl(knlr)θ(R−r) (1)

+ [jl(ξnl)/hl(ηnl)]hl(qnlr)θ(r−R)
}
,

where ξnl and ηnl are solutions of an eigenvalue equation:

ξnljl+1(ξnl)hl(ηnl)−ηnljl(ξnl)hl+1(ηnl) = 0, (2)

with a relation ξ2
nl + η2

nl = 2mR2V0/h̄
2. jl(x) represents

a spherical Bessel function, and hl(x) represents a spheri-
cal Hankel function defined as h0(x) = exp(−x)/x, h1(x)=
exp(−x)(1 +x)/x2 and so on. Cnl represents a normaliza-
tion constant. Thus we arrive at the energy level as

E
(0)
nl = h̄2ξ2

nl/(2mR
2)−V0 . (3)

To incorporate the effect of a graded potential near
the surface, a Wood–Saxon potential has often been
considered:

VWS(r) =−
V0

1 + exp[(r−R)/dWS]
, (4)

where dWS represents the diffusiveness at the surface.
A one-particle Schrödinger equation with this Wood–
Saxon potential cannot be solved analytically; it has been
solved by numerical methods such as the shooting method,
Runge–Kutta method, and so forth. In the present report,
we calculate energy levels analytically by a perturbation
method. By expanding (4) around r = R on the condition
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that dWS/R� 1, we obtain

VWS(r) = −V0 [θ(R− r)− (π2/6)d2
WSδ

′(r−R)

+O((dWS/R)4)] , (5)

where a prime over δ(r−R) means a derivative with re-
spect to r. Regarding the second term as a perturbation,
we obtain the perturbed energy to first order in (dWS/R)2

as

δE
WS(1)
nl = −

2π2V0

3C2
nl

(
dWS

R

)2

jl(ξnl)

× [(l+ 1)jl(ξnl)− ξnljl+l(ξnl)] . (6)

In the case of a simple one-particle model, exchange
correlation and Coulomb correlation between electrons
have not been considered. For electrons in a square well
with a finite depth, the electron density has the maximum
– coming from Friedel oscillations – just inside the surface.
At that region, electrons having parallel spins avoid one
another because of the Pauli exclusion principle, and elec-
trons having antiparallel spins avoid one another because
of Coulomb repulsion. Thus electrons at that region tend
to suppress the density obtained by a one-electron model,
and eventually the positive background of jellium attracts
electrons there. To incorporate these factors, we consider
a potential having a V-shaped valley at the surface:

VV(r) =VSQ(r) (7)

−pVV0

{
e(r−R)/dVθ(R−r) + e−(r−R)/dVθ(r−R)

}
=VSQ(r)−2pVV0

[
dVδ(r−R) +O((dV/R)3)

]
,

where −pVV0 is the additional depth to −V0, and dV is
the diffusiveness. The second line of (7) shows an expanded
form around r =R, with the condition that dV/R� 1. The
perturbed energy to first order in (dV/R) is written as

δE
V(1)
nl =−

2pVV0

C2
nl

[
2dV

R
j2
l (ξnl) +O((dV/R)3)

]
. (8)

Though it seems that δE
V(1)
nl depends on both pV and dV, it

depends only on a product pVdV as far as dV/R� 1. Thus

δE
V(1)
nl for a deep and narrow valley can be the same as that

for a shallow and broad valley.
Figure 1 shows profiles of these potentials for a Na20

cluster with parameters V0 = 6.0 eV, rS = 4.0, and dWS =
dV = 0.25 Å . Expansion parameters are estimated as
dWS/R= dV/R= 0.044 . A dashed-dotted curve shows the
potential obtained by Ekardt [4]. A dashed curve shows the
V-shaped potential VV(r). Throughout the paper, we set
pVdV = 0.125 Å for Na clusters.

Figure 2 shows the energy levels of occupied states:
Enl =E

(0)
nl +δE

WS(1)
nl andEnl =E

(0)
nl +δE

V(1)
nl . Our energy

diagram agrees well with that calculated by Ekardt [4].
With the increase in energy, energy levels with a Wood–
Saxon potential VWS(r) start to deviate from other energy
levels. The reason is that the VWS(r) has a slightly raised
region inside the surface, whereas the Ekardt’s potential

Fig. 1. One-electron potentials.

has a descending profile there. This comes from exchange
and Coulomb correlations between electrons mentioned
above.

In the case of unoccupied states, it can be shown that
energy levels for VWS(r) are higher than those for VV(r),
because an electron having a high angular momentum
tends to be affected by the potential modulation near the
surface. Hereafter, we use VV(r) as a one-electron poten-
tial. Analytical expressions of (6) and (8) enable us to
check the accuracy of calculations. In most cases, ratios
dWS/R and dV/R are a few percent and ensure our estima-
tion of energy levels.

3 Energy levels of an ionized cluster

We apply the present treatment to the energy levels of
an ionized cluster. For an ionized cluster with a positive
charge Ze, we introduce an additional potential coming
from the Coulomb interaction:

δVZ(r) =−
Ze2

R
θ(R− r)−

(Z+ 1)e2

r
θ(r−R) . (9)

In total, the depth of the potential inside a cluster be-
comes −(V0 +Ze2/R). From the perturbation outside the
surface, we have an additional energy

δE
Z(1)
nl =−

2Ze2

h̄2RC2
nlη

2
nl

[
j1(ξnl)

hl(ηnl)

]2 ∞∫
ηnl

xh2
l (x)dx , (10)

For the sake of rapid convergence, we carry out Romberg
integration of (10). Figure 3 shows the energy levels of
a Na+1

60 cluster. Our diagram agrees with that calculated
by Ekardt [4]. The greatest difference, 0.1 eV, appears at
the 1d-level. Comparing with a neutral Na60 cluster, one
sees that the energy levels are shifted by the same amount,
which is the trend that Ekardt has shown [4]. This means
that a Coulombic potential does not affect the mutual en-
ergy levels of the occupied states.
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Fig. 2. Energy levels of NaN clusters with rS = 4.0. Labels
show angular momenta. Triangles show the data calculated for
a Wood–Saxon potential, and circles show the data calculated
for a V -shaped potential.

Fig. 3. Energy levels of a neutral Na60 cluster and an ionized
Na+1

60 cluster.

4 Total energy per atom

Several researchers have calculated the total energy per
atom, which reflects the stability of clusters. Here we clar-
ify the relation between the total energy and the summed
one-particle energies. We define the sum as follows:

ES(N) =
∑
σ

∑
nl

(2l+ 1)Enlθ(EF−Enl) , (11)

where σ represents the spin state, EF means the Fermi
energy and Enl = E

(0)
nl + δE

V(1)
nl . Because our profile of

ES(N)/N is similar to that calculated by Ekardt [4] and
Yannouleas and Landman [14], we use the least squares
method to fit our data to theirs. Assuming the total energy

Fig. 4. Total energy per atom of NaN clusters.

per atom to be expressed as

ET(N)/N = α[ES(N)/N ] +β , (12)

we obtain α = 0.758 and β = 0.839 eV. Our calculated re-
sult, shown in Fig. 4, traces their data well in a wide range
ofN . It should be noted that the value 0.758 is very close to
3/4, which has been proposed by Clemenger [15] to explain
the binding energy of electrons in a modified harmonic
potential. Since the potential has a different profile from
our potential, it is concluded that the oscillatory part of
ET(N)/N can be estimated by 3/4 of ES(N)/N .

5 Ionization energy

In the above sections, it is shown that our results agree
with those calculated by a DF method [4] without SIC.
Ishii et al. [13] have shown that such a simple DF method
underestimates the ionization energy and that SIC sup-
plies the lack of it. Considering this situation, we superpose
an additional term to the potential VV(r) of (7). Because
the effect is thought to be great near the surface, we take it
to be of the same type as VV(r) but with a different coeffi-
cient, and the diffusiveness:

δVCR(r) =−2pCRV0[dCRδ(r−R) +O((dCR/R)3)] . (13)

Another reason for choosing this type of potential is that
we need to avoid the increase in the number of fitting pa-
rameters. In this sense, our model is favorable. We calcu-
late the highest occupied energy levels for both Na and
K clusters. Figure 5 shows the results of Na clusters with
pCRdCR = 0.8 Å. Zigzag sequences of circles reflect pro-
cesses of filling vacant states with electrons. For example,
a sequence of 2 circles from N = 19 to 20 shows the fill-
ing process of the 2s-state with 2 electrons. A sequence of
14 circles from N = 21 to 34 shows the filling process of
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Fig. 5. Ionization energy of NaN clusters.

Fig. 6. Ionization energy of KN clusters. The bulk ionization
energy is 2.4 eV.

the 1f -state with 14 electrons. Thus the number of circles
in a certain sequence shows the degeneracy of the highest
energy level. The dashed curve shows a classical result, in-
cluding an image charge effect [16] in which 2.7 eV is the
bulk ionization energy. The lower sequence of open circles
shows the result without the correction δVCR(r). As has
been pointed out by Ishii et al. [13], the ionization energy
is underestimated. If we include the correction potential
δVCR(r), the calculated values become closer to experi-
mental data [17] and those of Ishii et al. [13]. It should be
noted that our calculation is based on a spherical cluster,
which gives an oscillatory profile connecting only neighbor-
ing magic numbers. Between magic numbers, oscillations

appearing in their data come mainly from shape deforma-
tions. Clemenger [15] has considered the effect of shape
deformations for a modified harmonic potential.

Figure 6 shows the ionization energy of K clusters; we
choose rS = 4.86 and V0 = 4.5 eV, estimating from the cal-
culated data by Chou et al. [18]. Since the surface diffu-
siveness is thought to be larger than that of Na clusters,
we set a product pCRdCR for K clusters to be (4.86/3.93)×
0.8 Å. In the same way as Na clusters, the size dependence
of ionization energy agrees with the experimental data of
Saunders et al. [19].

6 Conclusion

Though our shell model is phenomenological and simple,
we show that a one-particle potential having a V-shaped
valley at the surface works well to explain electronic states
of alkali clusters: energy levels, total energy per atom, and
energy levels of ionized clusters. Our shell model has the
advantage over other models, because it gives analytical
expressions of energy levels, and it is applicable to a large
cluster having more than 1000 atoms. Moreover, it can be
easily extended to include the effect of shape deformations.
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